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Abstract. Cross-domain recommendation (CDR) is an effective method to deal
with the problem of data sparsity in recommender systems. However, most of
the existing CDR methods belong to single-target CDR, which only improve the
recommendation effect of the target domain without considering the effect of the
source domain. Meanwhile, the existing dual-target or multi-target CDR methods
do not consider the differences between domains during the feature transfer. To
address these problems, this paper proposes a graph neural network for CDR
based on transfer and inter-domain contrastive learning (TCLCDR). Firstly, user-
item graphs of two domains are constructed, and data from both domains are
used to alleviate the problem of data sparsity. Secondly, a graph convolutional
transfer layer is introduced to make the information of the two domains transfer
bidirectionally and alleviate the problem of negative transfer. Finally, contrastive
learning is performed on the overlapping users or items in the two domains, and the
self-supervised contrastive learning task and supervised learning task are jointly
trained to alleviate the differences between the two domain.

Keywords: Cross-domain recommendation · User-item graphs · Transfer ·
Contrastive learning

1 Introduction

Recommendation algorithms are usually divided into three categories: content-based
[1], collaborative filtering-based [2] and hybrid ones [3]. Cross-domain recommenda-
tion (CDR) algorithm is a kind of model-based collaborative filtering recommendation
algorithm, which is a challenge in recommender systems.

To further improve themodel’s ability to extract representationvectors and the recom-
mendation performance of the model in two domains, this paper proposes a graph neural
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network for CDR based on transfer and inter-domain contrastive learning (TCLCDR).
The main contributions of this paper are as follows:

– The information of two domains is used to alleviate the problem of data sparsity.
– A graph convolutional transfer layer (GCTL) is designed to make full use of the

information of its own domain and the other domain, which improves the ability of
the model to extract representation vectors and alleviates the problem of negative
transfer.

– Considering that the similarity of overlapping users or items in the two domains
is greater than that of non-overlapping users or items, a contrastive learning loss
function (CLLF) is proposed to alleviate the difference between the two domains
during information transfer.

2 Related Work

Single-domain Recommendation. In 2018, Berg et al. [4] proposed the Graph convolu-
tional matrix completion for bipartite edge prediction (GCMC),which effectively com-
bined user interaction data and side information to predict the score. In 2019,Wang et al.
[5] proposed Neural Graph Collaborative Filtering (NGCF). In 2020, He et al. [6] pro-
posed a Simplifying and Powering Graph Convolution Network for Recommendation
(LightGCN). Compared with NGCF, LightGCN simplified feature transformation and
nonlinear activation, which improved the recommendation effect while reducing model
training time.

Single-target CDR. The task goal of the single-target CDR is to use the data-rich
source domain for modeling to improve the recommendation accuracy of the model for
the data-sparse target domain.

Dual-target CDR. In 2018, Hu et al. [7] proposed Collaborative Cross Networks for
CDR (CoNet). The algorithm cross-mapped and connected the hidden layers of the two
domains to form a collaborative cross network. In 2019, Zhao et al. [8] proposed a CDR
via Preference Propagation GraphNet (PPGN). The algorithm put the users and items of
the two domains into a graph, and then aggregated the information of the two domains
through graph convolution. In 2020, Liu et al. [9] proposed a CDR via Bi-directional
Transfer Graph Collaborative Filtering Networks (BiTGCF). The bidirectional transfer
learning method was used to realize the mutual transfer of knowledge between the two
domains.

Multi-target CDR. The task goal of the multi-target CDR is to improve the
recommendation accuracy of all domains by using data from multiple domains.

3 Method

This section will describe the TCLCDR’s framework (see Fig, 1). Firstly, the model
uses the user-item rating matrixes of the two domains to construct the source and the
target domain user-item graph respectively, and aggregates the information of the two
domains through the GCTL. Specifically, taking the update of the source-domain user
representation vector (URV) as an example, it can be implemented in three steps: (1) the
user-itemgraphs of the twodomains are input into the graph convolutional layer (GCL) to
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obtain the user graph convolutional representation vectors (GCRVs); (2) The user GCRV
in the source domain and that in the target domain are transmitted to the transfer layer to
obtain the user transfer representation vector (TRV). (3) Then, the source-domain user
GCRV and the user TRV are aggregated to obtain a new source-domain URV. The other
representation vectors are updated in the same way. Finally, the representation vector is
transmitted to the prediction layer to output the recommendation list. Considering that
the representation vectors of overlapping users or items should be more similar than
those of non-overlapping users or items, the model performs contrastive learning in the
source and target domain, and jointly trains the self-supervised contrastive learning task
and the supervised learning task.

Fig. 1. The overall framework of TCLCDR

3.1 Construction of Graphs

Taking Ms users us = us1, u
s
2, . . . , u

s
M s and Ns items is = is1, i

s
2, . . . , i

s
Ns in the source

domain as nodes and all interaction information Ls as edges, a user-item graph in the
source domain is constructed in the form of a matrix as shown in Eq. (1):

Gs
input=

[
0M

s×Ms
Rs

RsT 0N
s×Ns

]
(1)

whereRs denotes thematrix of sizeMs×Ns, them-th row and n-th column array element
is Rs

m,n, and RsT denotes the transpose result of Rs. if iteraction exists between usm and
isn, R

s
m,n = 1; otherwise, Rs

m,n = 0. The target-domain user-item graph is constructed in
the same way.

3.2 Graph Convolutional Transfer Layer

The representation vector {e(0)
us , e(0)

is } of users and items in the source domain and the

representation vector {e(0)
ut , e(0)

it } of users and items in the target domain are initialized.
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Extraction of the Graph Convolutional Representation Vector. The source-domain
user-item graph is input into the GCL to obtain the source-domain user and item GCRV

{
(
egcfusm

)(k)
,
(
egcfisn

)(k)}, and the target-domain user-item graph is input into the GCL to

obtain the target-domain user and itemGCRV {
(
egcfutm

)(k)
,
(
egcfitn

)(k)}. The source-domain

user GCRV is extracted as shown in Eq. (2):

(
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m
Gs
m,n

(
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where k is the number of GCL,
(
egcfusm

)(k)(
egcfisn

)(k)
is the k-th GCRV,Gs

m= {n|Gs
m,n> 0}

is the collection of items that usm interacts with in the source-domain. The other GCRV
are calculated in the same way.
Extraction of the Transfer Representation Vector. The transfer layer is an important
part of the TCLCDR. By extracting the TRV, the model uses the information of its
own domain and other domains, and realizes the information transfer between the two
domains. Specifically, the TRVcan be obtained by transferring the source-domainGCRV
and the target-domain GCRV to the transfer layer, as shown in Eq. (3) and (4):

(etrum)(k) = Wu(lusm(egcfusm
)(k) + lutm(egcfutm

)(k) (3)

(etrin)
(k) = Wi(lisn(e

gcf
isn

)(k) + litn(e
gcf
itn

)(k)) (4)

where Wu,Wi represent the mapping matrix, and lusm is calculated as shown in Eq. (5):

lusm = Nusm

Nusm + Nutm

(5)

where Nusm and Nutm represents the number of interactions of user um in the source and
target domain, respectively. lutm , lisn and litn are calculated in the same way.
Aggregataion of the Representation Vectors. Finally, the TRV and the GCRV are
aggregated to update the representation vectors of the source and target domain. The
aggregation of the URVs is shown in Eq. (6) and (7):

e(k)
usm

= (etrum)(k) + λs(egcfusm
)(k) + (1-λs)(egcfutm

)(k) (6)

e(k)
utm

= (etrum)(k) + λt(egcfutm
)(k) + (1-λt)(egcfusm

)(k) (7)

where λs, λt represent hyperparameters ranging from 0 to 1 that control the weights of
the graph convolutional vectors for the source and target domain. The same goes for
item representation vectors (IRVs).

After obtaining the representation vector of each GCTL, the final URV and IRV are
obtained by concatenation. When the number of layers is 3, the user representations in
the source domain are obtained as shown in Eq. (8):

eusm = concat
(
e(1)
usm

, e(2)
usm

, e(3)
usm

)
(8)
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3.3 Construction of the Contrastive Learning Loss Function

From the user’s perspective, each user um has two different representation vectors
eusm , eutm in the source and target domains after passing through the GCTL. Although the
same user may have different preferences and interaction histories in the two domains,
the vectors of its source domain and its target domain should be more similar than
the representation vectors of other users in the target domain, so the loss function of
user-based inter-domain contrastive learning is constructed as shown in Eq. (9):

Luinter =
∑
usm∈us

-log
exp

(
s
(
eusm , eutm

)
/τ

)
∑

um′∈utexp
(
s
(
eusm , eutm′

)
/τ

) (9)

where s (·) is the similarity function (cosine similarity is used in this paper), and τ is
the temperature parameter. The loss function of item-based inter-domain contrastive
learning (Liinter) is calculated in the same way.

3.4 Rating Prediction and Model Training

After obtaining the URV and IRV, the user’s rating of the item is calculated through the
prediction layer, and the calculation method is shown in Eq. (10):

y
∧s
umin =< esum , esin > (10)

The loss function of the supervised learning task uses the cross-entropy loss function.
Because the effect of the two domains needs to be improved simultaneously, the loss
function of the two domains needs to be calculated, as shown in Eq. (11) and (12):

Lbces = −
∑

(usm,isn∈Os)

ysumin log
(
y
∧s
umin

) + (
1-ysumin

)
log

(
1-y

∧s
umin

)
(11)

Lbcet = −
∑

(utm,itn∈Ot)

ytumin log(y
∧t
umin) + (1-ytumin)log(1-y

∧t
umin) (12)

whereOs represents the training sample set composed of source-domain users and items,
ysumin represents the real label of the source-domain training set. When usm interacts with
isn, y

s
umin

= 1; otherwise, ysumin = 0. The same goes for the target domain.
Finally, contrastive learning loss functions and cross-entropy loss functions are

combined to jointly train the TCLCDR, and the final loss function is shown in Eq. (13):

L = Lbces + Lbcet + λ1(L
u
inter + Liinter) (13)

where λ1 and λ2 represent hyperparameters ranging from 0 to 1.
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4 Experiments and Results

4.1 Datasets

In this paper, we conduct experiments on the Amazon dataset including: “Electronics
(Elec)”, “Cell Phones (Cell)”, “Sports and Outdoors (Sport)”, “Clothing Shoes and
Jewelry (Cloth)”, “Grocery and Gourmet Food (Groc)”, “Tools and Home (Tool)”. For
each dataset, We filter the data to include users who have at least 5 interactions and
items that have at least 10 interactions [5]. These six datasets are then used to form three
groups of datasets for experiments. Finally, we keep the overlapping users and all items.
The statistics of datasets are shown in Table 1.

Table 1. The Statistics of Datasets

dataset users items interactions Sparsity (%)

Elec & Cell 3325&3325 39463&18462 118879&53732 99.90&99.91

Sport & Cloth 9928&9928 32310&41303 102540&97757 99.96&99.97

Groc & Tool 22746&22746 49217&66961 340857&333588 99.97&99.98

We use the leave-one-out to build the training and test sets. The leave-one-out is
different from K-fold verification. The leave-one-out takes the last interaction item of
the user as the test set of the user, and the remaining interaction items as the training set.

4.2 Baseline Model Comparison

In this section, we compare TCLCDR with three single-domain models and three CDR
models on three datasets (Elec & Cell, Sport & Cloth and Groc & Tool) by using two
metrics including Hit Rate (HR) andNormalized Discounted Cumulative Gain (NDCG).
The larger the values of these two metrics, the better the performance of the model. The
results are shown in Table 2, where the best results are in bold.

It can be seen from Table 2 that two metrics values obtained by TCLCDR on all
the datasets are the best, which illustrates the effectiveness of TCLCDR. For the single-
domain model, the indicators of the LightGCN are always higher than those of NGCF
and GCMC, indicating that the simplified feature transformation of LightGCNF can
improve the recommendation effect. For the cross-domain model BiTGCF, the perfor-
mance of which is greatly improved compared with other baseline models, indicating
that the bidirectional transfer effect in BiTGCF is significant. On thewhole, the proposed
TCLCDR outperforms other baseline models significantly.

4.3 Model Ablation Experiments

The Effect of Transfer Layers. Three models are compared, which are (1) TCLCDR,
(2) TCLCDR-notranswithout usingGCTL, and (3) TCLCDR-noWwithout themapping
matrix in the GCTL. Figure 2 shows the experimental results.
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Table 2. Baseline Model Comparison

dataset metrics Single-Domain Model Cross-Domain Model

GCMC NGCF LightGCN CoNet PPGN BiTGCF TCLCDR

Elec HR 0.3883 0.4096 0.4087 0.4484 0.4600 0.5657 0.6364

NDCG 0.2238 0.2548 0.2560 0.2861 0.2644 0.3535 0.3793

Cell HR 0.4063 0.4334 0.4499 0.4643 0.5126 0.5621 0.6496

NDCG 0.2364 0.2749 0.2847 0.3004 0.2504 0.3542 0.4044

Sport HR 0.3405 0.3360 0.3917 0.3667 0.3659 0.4473 0.5295

NDCG 0.1874 0.1953 0.2470 0.2244 0.1512 0.2768 0.3280

Cloth HR 0.2878 0.2953 0.3219 0.3235 0.3380 0.4191 0.5038

NDCG 0.1581 0.1633 0.1931 0.2127 0.1445 0.2474 0.2961

Groc HR 0.4808 0.4859 0.5528 0.5099 0.5555 0.5683 0.6418

NDCG 0.3011 0.3050 0.3584 0.3173 0.2867 0.3935 0.4527

Tool HR 0.4268 0.4334 0.4836 0.5626 0.5079 0.4956 0.5720

NDCG 0.2438 0.2506 0.2872 0.3696 0.2837 0.3203 0.3812

(a) Metrics on Elec & Cell (b) Metrics on Sport & Cloth

Fig. 2. Experimental results for different transfer layers

From Fig. 2, it can be seen that on the two datasets, when the model uses GCTL, the
values of two metrics in the two domains are higher than those when GCTL is not used
or the mapping matrix is not used.
The Effect of Contrastive Learning Loss Function. We design four variant models
based on TCLCDR to test the effect of CLLF as shown in Table 3, where ‘nossl’ denotes
the model not using self-supervised contrastive learning. Figure 3 shows the results.

From Fig. 3, it can be seen that on the dataset Elec & Cell, when the model uses
Luinter , the values of two metrics in the two domains are higher than those when Luinter
is not used. On the dataset Sport & Cloth, in most cases, the values of metrics obtained
by the the model using CLLF are higher than those obtained by the one without using
CLLF.
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Table 3. Models Using Different Contrastive Learning Loss Functions

dataset Elec & Cell Sport & Cloth

Models user nossl user item both nossl

Luinter
√ √ √

Liinter
√ √

(a) Metrics on Elec & Cell (b) Metrics on Sport & Cloth

Fig. 3. Experimental results for different contrastive learning loss functions

5 Conclusion

A graph neural network for cross-domain recommendation based on transfer and inter-
domain contrastive learning (TCLCDR) is proposed to recommend a list of favorite
items to users in two domains. Compared with the baseline models, the extensive exper-
imental results show that the proposed TCLCDR performs better in the hit rate and
normalized discounted cumulative gain. The results of ablation experiments show that
the graph convolutional transfer layer and contrastive learning can improve the model’s
ability to extract representation vectors and help the model generate more accurate item
recommendation lists in both domains.
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